IS in Biology	Implementing IS into AEVOL	Parameters calibration	Insights into IS dynamics	Conclusion & Perspectives

Studying Insertion Sequences through the artificial life software AEVOL

Juliette LUISELLI

INRIA Team Beagle Under the supervision of Guillaume BESLON

5th June to 23rd July 2019

IS in Biology ●○○○○	Implementing IS into AEVOL	Parameters calibration	Insights into IS dynamics	Conclusion & Perspectives

Juliette LUISELLI

Inria

Modelling & studying IS dynamics

Insights into IS dynamics

Conclusion & Perspectives

Insertion Sequences dynamics

Insights into IS dynamics

Conclusion & Perspectives

Insertion Sequences dynamics

Insights into IS dynamics

Conclusion & Perspectives

How do IS maintain themselves in the genome ?

Several Hypothesis:

- Sometimes beneficial (changing environment)
- Transpose fast enough
- Domestication

IS in Biology 0000● Implementing IS into AEVOL

Parameters calibration

Insights into IS dynamics

Conclusion & Perspectives

How do IS maintain themselves in the genome ? - Domestication

Figure: Proteic and DNA sequences before and after a silent mutation

IS in Biology	Implementing IS into AEVOL	Parameters calibration	Insights into IS dynamics	Conclusion & Perspectives

Implementing IS into AEVOL

Implementing IS into AEVOL

Parameters calibration

Insights into IS dynamics

Conclusion & Perspectives

Understanding AEVOL

Overview of the artificial life software AEVOL

Figure: The Aevol model. (from LIARD2018^[1])

Juliette LUISELLI

IS in Biology	Implementing IS into AEvoL ○○●	Parameters calibration	Insights into IS dynamics	Conclusion & Perspectives		
Adding a new f	unctionality to AEVOL					
Algorithm to manage IS						

- 4 bases model for AEVOL → genetic code redundancy:
 0 ≡ 2 and 1 ≡ 3 so that the rest of the software is unchanged
- Managing IS :
 - Stored as an array of two lists
 - Update lists at each mutation
 - Undergo a specific mutation for transposition
- Test the model for biases

IS in Biology	Implementing IS into AEVOL	Parameters calibration ●000	Insights into IS dynamics	Conclusion & Perspectives

Insights into IS dynamics

Conclusion & Perspectives

Exploring the parameters space

Many parameters to be fitted:

Mutation rate: 10⁻⁵, 5.10⁻⁶, 10⁻⁶ mutation/base/generation

■ Transposition rate: 10⁻³, 10⁻⁴, 10⁻⁵, 10⁻⁶ transposition/IS/generation

IS size:

10, 12, 14, 16, 18 base pairs (bp) (Hamming distance from consensus \leq 4)

Target sequence size: 5

IS in Biology Implementing IS into AEVC

Parameters calibration

Insights into IS dynamics

Conclusion & Perspectives

Calibration results - Proportion of IS

Juliette LUISELLI

Inria

ENS **(nría**

IS in Biology	Implementing	into	Aevo

Insights into IS dynamics

Conclusion & Perspectives

Chosen parameters

Mutation rate 5.10⁻⁶

Size: 12

Transposition rate: No significant effect?

 \Rightarrow Further exploration for the transposition rate, with fixed size and mutation rates.

IS in Biology	Implementing IS into AEVOL	Parameters calibration	Insights into IS dynamics	Conclusion & Perspectives

Insights into IS dynamics

IS	in	Bio	log	
oc		oc		

Insights into IS dynamics

Conclusion & Perspectives

Global dynamic

IS dynamics as a function of transposition rate

\Rightarrow 3 main dynamics observed

IS in Biology	Implementing	IS	intc

Insights into IS dynamics

Conclusion & Perspectives

IS bursts

IS bursts while they are repressed?

ENS Inria

IS in Biology	Implementing	IS	into

AEVOL Parameters calibration

Insights into IS dynamics

Conclusion & Perspectives

IS bursts

IS bursts while they are repressed?

Ania (nria

IS		Bio	log	y
00	00	00		

Insights into IS dynamics

Conclusion & Perspectives

IS bursts

IS bursts while they are repressed? - zoom

ENS Inria

Implementing IS into AEVOL

Parameters calibration

Insights into IS dynamics

Conclusion & Perspectives

Counter selection of target sequences ?

Proportion of target sequences in the coding genome

Hypothesis: Counter selection against target sequences in coding genome

Implementing IS into AEVOL

Parameters calibration

Insights into IS dynamics

Conclusion & Perspectives

Counter selection of target sequences ?

Proportion of target sequences in the coding genome

Hypothesis: Counter selection against target sequences in coding genome

Implementing IS into AEVOL

Parameters calibration

Insights into IS dynamics

Conclusion & Perspectives

Counter selection of target sequences ?

Proportion of target sequences in the coding genome

Hypothesis: Counter selection against target sequences in coding genome

Conclusion: ?

Implementing IS into AEVOL

Parameters calibration

Insights into IS dynamics

Conclusion & Perspectives

Beneficial effect in changing environment ?

Are IS beneficial in a context of changing environment

Figure: Proportion of IS in a stable (A) or changing environment (B) with a constant transposition rate of 10^{-2} transposition/IS/generation

IS in Biology	Implementing IS into AEVOL	Parameters calibration	Insights into IS dynamics	Conclusion & Perspectives

Conclusion & Perspectives

Insights into IS dynamics

Conclusion & Perspectives

Conclusion

Prototype for IS successfully developped:

- Model for IS developped
- Algorithm implemented into AEVOL
- Main values calibrated
- Three kind of dynamics observed : little to no activity, strong repression of IS or exploding genomes

Perspectives

Many fields to be explored:

- Constant environmental changes
- Follow the **lineages** in the population to better understand the link between the fitness and transposition rises.
- Combining with recombination based on homologous sequences?

IS in Biology	Implementing IS into AEVOL	Parameters calibration	Insights into IS dynamics	Conclusion & Perspectives

Thanks

I would like to thank my supervisor, Guillaume Beslon, and my coworkers on Aevol: Jonathan Rouzaud-Cornabas, Paul Banse & Laurent Turpin.

Special thanks to all the interns for the wonderfull discussions and breaks!

Insights into IS dynamics

Conclusion & Perspectives

Bibliography I

- V. LIARD, D. PARSONS, J. ROUZAUD-CORNABAS & G. BESLON: The Complexity Ratchet: Stronger than selection, weaker than robustness.
 In The 2018 Conference on Artificial Life, pp. 250–257. MIT Press, Tokyo, Japan, 2018. doi:10.1162/isal_a_00051.
- D. PARSONS, C. KNIBBE & G. BESLON: Aevol : un modèle individu-centré pour l'étude de la structuration des génomes.
 p. 8.

Insights into IS dynamics

Conclusion & Perspectives 00000000

An example : from the genetic sequence to the protein

Insights into IS dynamics

Conclusion & Perspectives

An example : Computing the fitness from the phenotype

Figure: The phenotype of an individual (from PARSONS2010^[2])

IS in Biology Implementing IS into AEVOL

Parameters calibration

Insights into IS dynamics

Conclusion & Perspectives

Preliminary results - Effect on fitness

