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Abstract

During my internship in the Beagle Team, I focused on the modeling of Insertion Sequences (IS).

Insertion Sequences are DNA sequences found in bacteria which are able to copy-paste (or transpose)

themselves in the rest of the genome. They have therefore their own dynamic within the genome. However,

this dynamic is not well understood and IS are not broadly studied. To better grasp what influences their

dynamic, I developed a model of their functioning and implemented it in the artificial life software

Aevol. Following this, I ran several in silico experiments which revealed three types of dynamics: either

the IS are maintained with a low transposition rate, or they are strongly counter-selected when this rate

is higher, or the genome size explodes when the transposition rate reaches even higher values. Moreover,

I was able to shed light on the fact that a changing environment helps IS to be maintained in the

population, even with a high transposition rate.
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Preamble
The following internship has been undertaken in the context of a gap year in computer science during my
biology formation. Since I was working on the representations of biological objects, many biological terms were
used. In order to avoid making the text too cumbersome, they will be mostly defined in footnotes.

1 Insertion Sequences in biology and
their dynamics

Insertion Sequences, usually called IS, are short
DNA sequences found in bacteria known to act in a
“selfish” way: they code for their own transposase,
an enzyme allowing them to copy or cut and paste
themselves all over the rest of the genome (see Fig.1).
Although very short (800 to 2500 base pairs(bp)), IS
can represent up to 2% of the genome[3], since there
are up to several hundreds of them in some bacterial
genomes[4].

Figure 1: Insertion sequences dynamic. (A) Time 0
(B) One time step. (C) Possible long term dynamics

Due to their dynamic, the number of IS tends to
explode under some circumstances[12], before they are
“domesticated” by the host and reach a reasonable
level again, but their exact dynamics is still not well
understood[1],[9].

This domestication is thought to be due to the re-
dundancy1 of the genetic code[5]: As a matter of fact,
it seems that some families of IS transpose onto some
specific sequence of DNA[3],[14]. This target sequence
could be mutated through silent mutations2 (see Fig.2)
when whithin a functional gene, which would prevent
essential genes from being knocked-out and hence pro-
tect the host from most of the deleterious impacts of
IS.

Figure 2: Proteic and DNA sequences before and af-
ter a silent mutation: the proteic sequence and hence
the function of the gene is unchanged, while the DNA
sequence is different from previously

However, there are many different IS famillies, and
they do not all have specific target sequences. It
has been suggested that some IS do not target spe-
cific sites but rather repetitive extragenic palindromic
sequences[13], which can be found all over the genome,
or have no target sequence at all. Some even seem
to transpose preferentially at a certain distance from
their original location, rather than into a specific type
of DNA sequence[5].

But in any case, why are IS not always suppressed
from the genome by mutating all possible sites of
transposition, when a preference exists, and/or delet-
ing the IS sequence itself?

Indeed, at first sight IS seem to be deleterious to
their host since they require energy from it to do their
own transposition, and they can insert into a functional
gene, which generally makes it non-functional. There-
fore, their existence itself has to be questioned: what
mechanisms allow this selfish sequences to subsist
without killing their host or being counter-selected?
Two hypothesis compete here[10],[2].

On the one hand, they could have an occasional
beneficial effect on the fitness3, which could suffice

1The genetic code is said to be redundant because 64 codons (3 bases of DNA) code for 21 amino acids so there is more than
one codon per amino acid.

2A silent mutation changes the DNA sequence but not the proteic sequence and hence not the function of the protein.
3The fitness is a value that describes the ability of an individual to survive and to reproduce itself. Although not directly

measurable on real organisms, it is often approximated with the number of offsprings of the individual, and it depends on the
environnement in which the individual is living.
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for them to be selected. In fact, IS are strongly in-
volved in many mutational processes since they cause
duplication and deletion. Moreover, having copies of
the same sequence all over the genome could favor
strongly all kinds of genomic rearrangements4,[5] since
those occur preferentially within sequences similar to
each other. As they are themselves transcripted, they
also increase the transcription of nearby regions by re-
cruiting enzymes for transcription[4]. Moreover, it has
been observed that the exploding number of IS causes
a hyper-mutability of the phenotype[12]. All these fea-
tures could occasionally improve fitness when individ-
uals are confronted to a fast changing environnement.

On the other hand, transposing fast enough to
overcome natural selection and being transmitting hor-
izontally5 would be a different way for IS to maintain
themselves, even with a negative impact on the fitness
of the population.

This intership aims at answering a fundamental
question about IS: which conditions would allow the
survival of IS in the genome, without them offer-
ing any direct beneficial impact on fitness? To this
end, we want to model the simplest rules that can cur-
rently be inferred from their observed dynamic. Since
they strongly interact with the whole genome and the
fitness of an individual as well as with other mutations,
this model has to be included in a multiscale evolving
simulation. IS modelisation will therefore be incorpo-
rated into Aevol, an artificial life software developped
by the Beagle Team in the INRIA laboratory of Lyon.

With this objective, I will first develop an algorithm
modeling the dynamic of IS. Then, I will need to set
up a simple version of Aevol with 4 bases, to take
the redundancy of the genetic code into account, since
it does not exists in the software for now. After that,
I will integrate IS and their transposition into the
software. Once the software is running, I will calibrate
the parameters to search for the different possible
dynamics.

2 Aevol - modeling artificial life

To understand how to implement new functionalities
in this software and how it allows to study evolution,
it is essential to gain an insight into Aevol itself[7].
Aevol is a C++ sofware which has been developed by
the Beagle team for almost 15 years, and is composed
of over 70 000 lines of code split in many modules. To
include my own code, I will use a dedicated branch on
the INRIA gitlab (/beslon/aevol ltisee/tree/juliette).

Aevol (see Fig.3, from Liard 2018[6]) emulates
a population, composed of a fixed number a individu-
als. Each of them has its own binary genome. In the
genome, some sequences are recognized as promoters6

and mark the beginning of the transcripion from DNA
to RNA. The transcription stops when a palindromic
sequence is encountered (hairpin structure). RNAs are
then translated to proteic sequences thanks to a sys-
tem of recognized binding sequences and an artificial
genetic code with 3 bases “codons”. Each protein is
then transformed into a mathematical function that
corresponds to its functional contribution, represented
by a triangle. Proteins are decrypted 3 bases at a
time, that is why there is 23 = 8 possible codons for
a binary genome. One is associated with starting a
protein, one with stopping it. Among the 6 others,
2 are for the width of the triangle (w0 or w1), 2 for
the mean (m0 or m1) and 2 for the height (h0 or h1).
We can thus define a binary number for each of the
parameter and by normalizing it we get virtually an
infinite number of possible triangles. The phenotype
of an individual is the sum of its triangles, and we
can define its fitness by computing the exponential of
the difference between its phenotype and an optimal
fitness function, the environment, which is usually a
sum of Gaussians functions.

4A genomic rearrangement is a large scale mutation involving copying or cutting a sequence and pasting it elsewhere, possibly
inversing it.

5Horizontal transmission occurs when non-parent organisms exchange genetic material.
6A promoter is a DNA sequence recognized by specific enzymes, which will begin the transcription at that localisation.
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Figure 3: The Aevol model. (A) Overview of the genotype-to-phenotype map. (B) Population on a grid and evolu-
tionary loop. (C) Local selection process with a Moore neighborhood. (D) Variation operators include chromosomal
rearrangements and local mutations

Randomly selected with their fitness as weight, in-
dividuals reproduce asexually with slight chances of
mutations, thus creating a new generation. At each
time step, there is variation and selection, hence the
emergence of evolution. This model allows to simu-
late evolution with only a few controllable parameters,
such as the population size or the mutation rate, and
to test various hypothesis on the causes of certain phe-
nomenons. For example, it has been shown that com-
plexity could arise in spite of natural selection, contrary
to the common intuition that it exists thanks to natural
selection[6]. The authors have shown that even when
defining a very simple environnement (represented by

a triangle optimal fitness function, hence possibly filled
with a single gene and a single protein), several genes
tend to arise in the early generations of the popula-
tions. This “complex” populations could not go back
to a simple state (with fewer genes) unless the mu-
tation rate was very high, and their final fitness was
below the fitness of populations with fewer genes.

The mutations currently taken into account by
Aevol are point mutations, small or big insertions
or deletions, and chromosomic rearrangements such
as duplication, translocation or inversion (see Fig.4,
from Paul Banse).
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Figure 4: The different types of mutations taken into
accound by Aevol

Using this model, the aim of this study is to add
IS in the Aevol platform. IS will be defined by a
given consensus sequence, from which they can differ
by a certain Hamming distance to allow IS to resist
mutations. Each IS will then be able to occasionaly
transpose onto a target sequence, which is also defined
previously.

3 Implementing transposition of IS

3.1 Redundancy of the genetic code

To include the possibility for the individual to de-
fend itself against transposition by protecting its es-
sential genes, we need to add the redundancy of the
genetic code into Aevol. In fact, in biology a codon
is composed of 3 bases. Since there are 4 possibilities
for each base (A, T, C or G), there are 64 different
codons. Nevertheless, there are only 21 amino acids
associated with them: several codons can code for the
same amino acid and thus a point mutation can change
the sequence without changing the final protein (see
Fig2). So far, the genome in Aevol was binary and
each of the 8 possible codons coded for a different
property. Hence, silent mutations were impossible. A
simple way to introduce redundancy is to use 4 bases:
0, 1, 2 and 3 with 2 equivalent to 0 and 3 equivalent
to 1 for the proteins and all preexistent mechanisms.
Supposedly, this will not change the functioning of the

software, except for the recognition of the IS target
sites and IS sequences.

To implement redundancy, we first need to replace
the initial creation of a random binary sequence by the
generation of a random sequence of numbers between
0 and 3. Then, each time an action is determined by
the nature of the base (0 or 1), we need to replace the
test x = 0 by x%2 = 0 and x = 1 by x%2 = 1 to
have the equivalences 1 ≡ 3 and 2 ≡ 0.

We need to take extra care when doing it because
there are many occurences of these tests all over the
code, and an unnoticed test could lead to a fully func-
tional code while introducing biases in favour of one
of the bases, or in favor of one of the strands. In fact,
most often the comparison was done with an equality
on the one strand and inequality on the other since
“not being a 1” was equivalent to “being a 0”, which
is no longer true in a 4 bases model.

3.2 Algorithm of IS tranposition

In order to implement IS transposition, the naive
way would be to scan the whole genome at each gen-
eration to recognize IS sequences and target sites and
randomly transpose one or several IS onto a target
site. However, this would be very costly to compute:
a usual size for a generation is 1024 individuals, which
have each a genome of several thousands base pairs
so reading all genomes for over 100 000 generations,
although not complex, is very costly. Another solution
is thus to use the same kind of algorithm that the one
currently used to model promoters.

As a matter of facts, promoters are stored in two
lists, one for each strand. At the creation of the
genome and each time a mutation occurs, a function
checks whether this creates or destroys a promoter and
updates the lists. Assuming n is the length of the
genome, np the number of promoters, lenp the length
of a promoter, and m the mean number of mutations
at each generation this method is clearly advantageous
while n� np ∗ lenp ∗m.

Regarding the target sites, the chosen approach is
to stick to biology: a transposed sequence can navi-
gate through the cell, finding or not a target site before
being destroyed. In the simulation, after an IS is cho-
sen to transpose, we will try a given number of time
ntry to find a target site by randomly choosing a site
in the genome. If no target site is found in ntry trials,
the transposition is cancelled.
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We choose to implement the two types of trans-
positions: replicative and conservative. In a replica-
tive transposition, the IS is copy-pasted onto a target
site, while in a conservative transposition the IS is cut-
pasted. In this way, if a conservative transposition fails
because no target site is found, the IS will have been
deleted, which occurs at various rates in biology too.

We can therefore propose this algorithm as leading
idea for the code when passing from a generation to
another. Naturally, the code itself will be inserted into
different parts of Aevol, and will not directly appear
as such.

Do point mutations:

for each point mutation:

check if one of the IS sequence is

concerned and update list

check if a new IS is created

Do chromosomal rearrangement:

for each rearrangement:

check if one of the IS sequece is

concerned and update list

check if a new IS is created

Do IS transposition:

compute the probability of transposition

(function of the number of IS)

compute the number of replicative and

conservative transpositions

for each conservative transposition:

if there are still IS:

remove the sequence

try to find a target site

n_try times

if found:

transpose onto it

update IS and promoters lists

for each replicative transposition:

if there are still IS:

try to find a target site

n_try times

if found:

transpose onto it

update IS and promoters lists

This code is executed only when computing the
mutation, there is for now no reason for IS to affect

another part of the code. They are believed to im-
pact the transcription of nearby genes[4], but this will
not be taken into account in this study since we focus
on the dynamic without modeling any direct effect on
fitness.

3.3 Parameters calibration: IS size, se-
quence and transposition rate

3.3.1 First calibration approach

Some decisions have to be made about the exact
modeling of IS. First of all, their size and sequence.
As a matter of fact, the usual size goes from 700bp up
to 2500bp[3]. Nevertheless, Aevol is a program, not a
real bacteria. Its genome is broadly reshaped and typi-
cally much smaller than actual bacterial genomes. For
example, promoters are comprised between 100 bp and
1000 bp in bacteria but are 22 bp in Aevol (2 bases
version). Moreover, we need IS to sometimes emerge
spontaneously, but not too often, so as to have a sig-
nificant percentage of the genome (higher than 0.1%)
which is realistic (lower than 2%)

In order to calibrate this parameter, several cross
tests have been launched: a size of 14, 16 or 18 bp,
combined with a fixed maximum Hamming distance
from the consensus of 4. Indeed, both the size of the
consensus and the distance to it influence on the same
parameter, the probabilty of spontaneous appearance
and disapparearance, so there is no need to explore
both. Each of these combinations is run 4 times with
each transposition rates (10−4, 10−5, 10−6 transposi-
tion/IS/generation) and each other mutations rates
(10−5, 5.10−6, 10−6 mutation/base/generation) as
those parameters, the transposition rate in particular,
are expected to play a huge role in the dynamics of
the IS. The 108 calibration experiments were run for
100 000 generations on the Beagle cluster.

The target sequence length and sequence have to
be fixed too, but the range of possibilities is much thin-
ner since it is known to be very short in bacterias. In
fact, in the literature it goes from 2 bp up to 20 bp[11].
In order to have a sequence long enough to be a little
bit rare and so to potentially observe selection on it,
and longer than a codon so that it is not selected as a
codon, we decided to take it long (compared to the IS
sequence length): 5 bp, with 1 difference allowed with
respect to the consensus sequence.
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Figure 5: Proportions of IS (mean over the last 1000 generations) for the 3 IS sizes and 3 transposition rates tested.
The mutation rate is 5.10−6 mutation/base/generation.
There is no data for size 18, and somes points are missing for size 16 too, because the proportion is 0 and the scale
is logarithmic.

Results (see Fig.14) show that sizes of 16 and 18 do
not allow to observe a significant proportion of IS, as
this proportion falls to 0 in several experiments. Ob-
serving a dynamic in those conditions would be very
difficult. We therefore decided to test smaller sizes
(10 and 12bp) to compare with the values for a size
of 14bp (see next subsection).

The transposition does not seem here to have a sig-
nificant impact, contrary to what was expected. Thus,
we suppose the proportion of IS observed here is nearly
only due to the random presence of any defined se-
quence in the genome, so a higher transposition rate
(10−3 transposition/IS/generation) will be tested.

Finally, the mutation rate had no impact on the
proportion of IS and only little impact on the fitness

(see Appendix 1). As it is expected to play an im-
portant role for the genome size (and so the com-
putation time) but not on IS themselves, it was de-
cided to take the middle value tested (5.10−6 muta-
tion/base/generation).

3.3.2 Second calibration

Results of the second parameters calibration (see
Fig.6) show that the proportion of IS reaches a new
level when size decreases: up to 4% with a size of
10bp. This value is too high, in particular in compari-
son with maximal estimation of 2% announced in the
introduction. To have almost 1% of IS in the genome,
we choose a size of 12bp.

Figure 6: Proportions of IS (mean over the last 1000 generations) for the 3 sizes and 3 transposition rates tested.
The mutation rate is 5.10−6 mutation/base/generation.
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Once again, the transposition rate does not seem
to have a crucial impact here. It will therefore be
further tested with the chosen size (12bp) and muta-
tion rate (5.10−6 mutation/base/generation) in order
to look for different dynamics: once we do have IS in
the genome at the expected proportion, its variation
can be further studied.

Finally, these two calibration experiments also en-
able us to compare the fitness of the different popu-
lations, relatively to their proportion of IS (see Fig.7).
We can note that the highest fitness are reached when
there is no IS in the population, so there is indeed a
deleterious effect of the presence of IS in a genome.
However, as soon as IS are present, there is no dis-
tinguishable correlation between the fitness and the
proportion. This suggests that their activity is low for
any of those transposition rates.

Figure 7: Mean fitness of the population plotted
against the mean proportion of IS in the population
(over the last 1000 generations) for the 5 sizes and 4
transposition rates tested.
No correlation is observed.

3.3.3 Does the functional form of the relation
between the number of IS and the trans-
position rate have an major impact?

First of all, what is called the transposition rate has
to be defined. Up to this point, we considered that
the probability of an IS to transpose was constant at
each generation regardless of the context. However,
many different proposals can be found in the littera-
ture about the functional form of the relation between

the number of IS and the actual transposition rate.
Some propose that the rate remains constant[5], as we
did previously, but some that it decreases[9] because
of a response from the cell to the accumulation of
transposase, contrary to the classical hypothesis that
it increases because of this accumulation, at least up
to a threshold rate.

We therefore decided to test different functional
forms and to observe the related dynamics. The aim
here is to see whether the functional form influences
the IS dynamics. Since we cannot explore all the pa-
rameter space at once, we explore this property after
having calibrated the IS size, transposition rate and
the mutation rate.

Five function forms were implemented into Aevol
during the internship: linearly increasing, linearly de-
creasing, constant, increasing hyperbolic and decreas-
ing hyperbolic (see Fig.8). Due to time constraints,
only the constant form and the linear positive form
were thoroughly tested. In fact, other forms need more
time to be calibrated since they contain more param-
eters.

Figure 8: The different types of functional forms
(A) R(nIS) = cst
(B) R(nIS) = nIS × α
(C) R(nIS) = −nIS × α× β + α
(D) R(nIS) = α× (1− e−β×nIS)
(E) R(nIS) = α× e−β×nIS
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4 Testing the model

4.1 Has redundancy introduced new biases
into the system?

To test whether redundancy introduced new biases
into the system, I ran several tests.

4.1.1 Bases distribution

First of all, I tested whether the distribution between
the 4 bases was uniform, since no bias is expected.
To this end, I ran 10 experiments with different seeds
but the same parameters7 for 10 000 generations, and
took the mean bases distribution of each population
(which are almost clonal populations) to compute the
confidence interval around the mean, with a 95% con-
fidence level I = [µ− 2× σ√

n ; µ + 2× σ√
n ]. We ob-

tained the following results :

Base lower bound upper bound
0 0.24583 0.25567
1 0.24688 0.25628
2 0.24546 0.25397
3 0.24281 0.25307

The intervals are quite broad due to the low num-
ber of “individuals” (each population is here counted
as a single individual), but they are reasonable and all
contain the unbiased value (0.25). Hence we cannot
reject the hypothesis of the four rates being equal to
0.25 (with an error rate of 0.05)

In addition to that, we would like to verify that
the distribution of the 2 bases version is originally
uniform too, since that has not been measured pre-
viously. Therefore, we ran 10 experiments of the 2
bases Aevol with the same seeds and parameters as
previously and used them to compute the confidence
interval around the mean, with a 95% confidence level.
We obtained the following results :

Base lower bound upper bound
0 0.49680 0.50046
1 0.49953 0.50319

We cannot reject the hypothesis of the bases dis-
tribution being different from 0.5, which confirms our
hypothesis: the four bases version of Aevol did not
introduce new biases in the bases distribution.

4.1.2 Genes strand distribution

In most cases in Aevol, we compare if a base is
equal to 1 or 0 on the one strand and is different from
that on the other one, which would lead to severe bi-
ases in the distribution of genes in case a test has been
forgotten while changing for 4 bases. This is why I
decided to test whether the distribution of genes be-
tween the two DNA strands is significatively different
between the 4 bases and the 2 bases Aevol. To run
this test, I developed a new post-processing program
to extract the number of genes on each stand for each
individual of the population (genes count.cpp).

I treated the data with a Mann-Whitney U test to
verify whether the distribution is significatively differ-
ent between the two versions and obtained a p-value
of 0.40567.

There is thus no significant difference between the
two versions of the software in the distribution of genes
or bases.

4.2 Is redundancy necessary and sufficient
to explain the dynamics of IS?

The 4 bases model was developped to enable target
sites to be counter selected in essential genes. To ver-
ify whether this prediction is correct, we compare the
proportion of target sites in genes for different transpo-
sition rates, regarding the total number of target sites
and the proportion of bases of the genome included in
genes. In fact, we could expect the selection against
target sites in genes to be higher as the transposition
rate increases. To this end, I developped another post-
prcessing program (locate target IS.cpp). To find
and count target site we have to read the entire
genome, which is very costly in time and cannot be
done for all individuals at each generation. A post-
processing program allows us to do this once the run
is ended, or for each back-up of any experiment.

Here, we tested the proportion of target sites in
genes for 384 populations with various ranges of pa-
rameters. In particular, 6 different transposition rates
were tested with two different functional forms (see
Fig.9).

7population = 1024; mutation rate = 10−5
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Figure 9: Ratio between the proportion of target sites in genes and the proportion of genes in the genome after
200 000 generations regarding the proportion of IS in the genome for the linear (left) and constant forme (right)
experiments.

There is no significant correlation between the pro-
portion of target sites in genes and the proportion of
IS in the genome, but it appears that target sites or
sometimes strongly counter-selected. This occurs only
when the transposition rate is high (broader point dis-
persion). This suggests that it is not usefull to counter-
selected target before IS become a real danger to the
genome. However, once there are no more IS in the
genome there is no need to counter-select target sites,
which would explain why some ratio are so high even
if a transposition rate of 10−2.

We cannot conclude towards the dynamic of tar-
get sites counter selection, but it seems here that the
redundancy of the genetic code does have an impact
on it.

5 Exploring IS properties thanks to
Aevol

The first 10 000 generations in Aevol are hardly
comparable to what one can commonly observe in bi-
ology: the genome size explodes and the fitness in-
creases rapidly. Then, the fitness continues to increase
sporadically while the genome size decreases. To test
the reaction of a population to a particular parame-
ter, it is thus common to let evolve populations for a
large number of generations before testing the wanted
parameter. Here, we use 2 different populations that

have previously evolved in the presence of IS of size 12,
and mutation rate of 5.10−6 and a constant transposi-
tion rate of 10−6 (low enough for IS to not be selected
against) for 100 000 generations. Such populations
are called “wild types”. At this stage, the fitness has
reach a quasi stationary state around 10−2.

5.1 Are IS strongly counter-selected?

At 100 000 generations, 8 different transposition
rates were introduced: from no transposition at all
up to a rate of 10−1. Each rate was combined with
a functional form (constant or positively linear) and
each combination was repeated four times for each
wild type.

The results (see Fig.15) clearly show that the pro-
portion of IS decreases as the transposition rate in-
creases, from 0 to 10−2. This descent intervenes at
a lower transposition rate for the linear form, which
is logical since more transpositions occur under this
condition.

This tends to prove that IS are strongly counter-
selected as soon as they have a real impact. We can
separate the curve into three domains. In the first one
(transposition rate lower than 10−5 for the linear form
and lower than 10−3 for the constant form), transpo-
sition seems to have no impact since the proportion of
IS is similar to the one when there is no transposition
at all.
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Figure 10: Proportion of IS, genome size as function of transposition rate. All experiments began with wild types.
For rates from 0 to 10−2, values are means over the 1000 last generations in run of 100 000 generations. For the
transposition rate 5.10−2, values are the mean over the last 10 generations in a run of 70 generations and for the
transposition rate 10−1, values are the mean over the last 10 generations in a run of 30 generations, due to the
very high computing time as genome size explodes.

Once we reach a higher rate, IS are counter-
selected and their activity is maintained at a low rate,
their proportion decreasing as the transposition rate
increases. This means that their activity is deleterious
to the individuals. However, individuals are able to
maintain their fitness high, meaning they are adapting
themselves to resist transposition.

Finally, there is a threshold of transposition rate
over which genomes are not resilient enough to re-
sist IS invasion and we can observe that although the
proportion of IS in the genome remains globally the
same as with no transposition at all, the genome size
explodes (making it very hard to compute, and thus
experiments have to be stopped early), and the fitness
decreases drastically (see Appendix 2). Thus, we can
conclude that above a threshold transposition rate, in-
dividuals cannot control tranposition, which is highly
deleterious.

We can conclude here that to be present in the
genome of bacteria, IS must have a transposition rate
low enough in order to not be too deleterious and thus
not to be strongly counter selected, contrary to the
intuition that a higher rate would allow them to main-
tain themselves in the genome. However, it is difficult
to conclude regarding very high transposition rates,
since we cannot observe long term dynamics due to
computing time limitations.

5.2 Do we observe IS bursts?

In the above section, we conclude that when IS have
an activity, they are strongly repressed by the cell and
their proportion in the genome reaches almost 0 after
100 000 genertions. Since the experiments in which
IS disappear are probably the ones in which they have
a real activity (and probably a deleterious one), we
decided to have a closer look on them.

By following their fitness, genome size, proportion
of IS and number of transpositions at each genera-
tion across time, I spotted several tendencies: the fall
in the IS proportion generally intervenes in the first
20 000 generations. Naturally, it is faster when the
transposition rate is linear with the number of IS than
when it is constant.

On some experiments, a detail was striking: tem-
porary increases in the number of transpositions per
generation in the population seem to be temporally
correlated with a sudden increase (or decrease in 1
case) of the fitness (see Fig.11 for a representative
example). To see whether one of the event occured
before the other, I looked more precisely at what hap-
pened during the few thousands generations concerned
(see Fig.12). It seems that the increase of transposi-
tion events occurs while the mean fitness increase after
an outbreak in the fitness of the best individual, but
it is hard to conclude on the mechanisms behind this
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behaviour. By looking more precisely at the statistics
(see Appendix 3), we can see that the first fitness in-
crease is precisely correlated with the appearance of an
IS in the best individual. However, analysing more pre-
cisely the relationship between IS dynamics and fitness
increases would require the development of new post-
processing programs (for example to know whether the
best of a generation is issued from the best of the last
generation) that are out of the scope of this internship.

5.3 Is a changing environnement beneficial
for IS?

At 100 000 generations, the two wild types were also
exposed to two different environnemental conditions:
either they were kept in the same environnement as
before, or they were put into a new one. Both exper-
iments were repeated with the same parameters as in
the previous subsection.

Figure 11: Representative example of a time correlation bewteen fitness increase and transpositions increase

Figure 12: Zoom for generations 43000 to 45000 of the increase in transpositions and in fitness
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It seemed that at high transposition rates, IS
tended to be maintenained in the host genome for a
longer time when the population was subject to an
environnemental change, but the data did not suffice
to verify that hypothesis. I therefore tested another
feature of Aevol, which randomly changes the envi-
ronment across time. Due to a lack of time and some
corrupted data, I cannot provide statistics on the ob-
served differences, but through the example of Fig.13 it

is clear that while IS are quickly repressed when the en-
vironment is stable, they are maintaiend at a relatively
high proportion (around 0.5%) when the environment
is regularly changing. This indicates that when the
environment is changing, IS are not counter-selected,
while this is the case in a constant environment. Fur-
ther analysis are required to understand the cause of
this activity and its possible advantage.

Figure 13: Representative example for the proportion of IS in a stable, where IS disappear, (A) or changing
environment, where IS are maintained (B) with a constant transposition rate of 10−2 transposition/IS/generation

Conclusion and perspectives

Scientific conclusion

Throughout the internship, I successfully developed
a prototype of IS management from the algorithmical
modeling to the implementation in the artificial life
software Aevol and its testing. Different interest-
ing dynamics have been observed, hence proving that
this could be further studied thanks to in silico exper-
iments.

For now, there remains a bug that corrupts ex-
periments when they are stopped while running: the
backup files do not behave correctly. Due to that, my
experiments were run without interruption, but this re-
mains to be improved in order for the IS modeling to
be included in the full version of Aevol and to run
more demanding experiments.

We observe that there are two thresholds in the be-

haviour of IS, which change according to the functional
form of the tranposition rate regarding the number of
IS. Under the first threshold, IS have little to no ac-
tivity and are therefore not strongly regulated by the
individuals. Between the two threshold, IS are strongly
counter-selected, their rate being maintained very low.
This suggests that their activity is highly deleterious.
Above the second transposition rate threshold, IS to-
tally disrupt the genome, making it impossible to com-
pute. We cannot therefort predict whether they would
disrupt the genome until the death of the individuals,
or whether a domestication would finally occur.

Perspectives

To complete this model, it would be crucial to take
into account homologous sequences for genomic re-
combination. For now, genomic rearrangements occur
at random positions in the genome, but it is known
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that they mostly occur between homologous sequences
in Biology8. There is a functional version of Aevol
taking that parameter into account[8], but for now
it has not been tested with IS. Indeed, since IS are
repeated sequences spread accross the genome, they
might have a major impact on those kinds of genomic
rearrangements.

Another interesting perspective would be to test
the impact of IS and their prevalence in the popula-
tion when the environment is changing across time.
It was shown here that a changing environment could
maintain IS in the population when there would be
otherwise counter-selected, but to unveil a robust dy-
namic it would be necessery to test various intensities
of environmental changes, with various transposition
rates.

Last but not least, I was not able to decipher the
causal effect of the correlation between fitness and
transposition bursts, but there might be a fascinating
dynamic to uncover here. To test this more precisely,
it would be helpful to combine the version of Aevol
with IS with a version enabling us to follow the lineage
of the individuals. In fact, knowing what mutations oc-
cured when to which lineage and what will be the fate

of this lineage is crucial to study more precisely this
dynamic.

Personal conclusion

This internship allowed me to follow a project from
its very beginning, by picturing a model for IS trans-
position and bibliographical searches, to the end, by
implementing it, testing it and even beginning to run
experiments on it. Therefore, it was really fascinating
and it gave me a quick overview of what a full research
project can be.

Moreover, I had the opportunity to be a volunteer
worker for the international conference “Mathemati-
cal Models in Ecology and Evolution” (MMEE) which
took place in Lyon from 16th to 19th, July. This expe-
rience was also very instructive and it revealed to me
another part of what scientific research is.

Therefore, I would like to thank sincerely and
wholeheartedly the whole Beagle team for giving me
time and entertaining discussions. In particular, I am
gratefull to Guillaume Beslon for welcoming me in
the team and always taking the time to discuss my re-
sults and to Jonathan Rouzaud-Cornabas for pro-
viding me help on C++ and experiments management.

8During cell division (mitosis), chromosomes are highly condensed and, through base complementary, homologous sequences
tend to be stuck to each other. Strand breaks and repairs can occur at that moment
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6 Appendix

6.1 Parameters calibration

Figure 14: Fitness (mean over the last 1000 generations) for the 3 IS sizes and 3 transposition rates tested. The
mutation rate is 5.10−6 mutation/base/generation.

6.2 Are IS strongly counter-selected?

Figure 15: Fitness as function of transposition rate. All experiments began with wild types. For rates from 0 to
10−2, values are means over the 1000 last generations in run of 100 000 generations. For the transposition rate
5.10−2, values are the mean over the last 10 generations in a run of 70 generations and for the transposition rate
10−1, values are the mean over the last 10 generations in a run of 30 generations, due to the very high computing
time as genome size explodes.
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6.3 Data around an IS bursts

Generation Fitness (best) number of IS (best)
43390 1.101498e-02 0
43391 1.101498e-02 0
43392 1.101498e-02 0
43393 1.101498e-02 0
43394 1.101498e-02 0
43395 1.101498e-02 0
43396 1.101498e-02 0
43397 1.101498e-02 0
43398 1.101498e-02 0
43399 1.101498e-02 0
43400 1.101498e-02 0
43401 1.101498e-02 0
43402 1.101498e-02 0
43403 1.101498e-02 0
43404 1.101498e-02 0
43405 1.216381e-02 1
43406 1.216381e-02 1
43407 1.216381e-02 1
43408 1.216381e-02 1
43409 1.216381e-02 1
43410 1.216381e-02 1
43411 1.216381e-02 1
43412 1.216381e-02 1
43413 1.216381e-02 1
43414 1.216381e-02 1
43415 1.216381e-02 1
43416 1.216381e-02 1
43417 1.216381e-02 1
43418 1.216381e-02 1
43419 1.216381e-02 1
43420 1.216381e-02 1

Statistics recorded for the shown experiment (constant functional form, transposition rate 1e-2, wild type 1,
stable environment, seed 75158785)
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