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Abstract
The biodiversity of ecological communities is influenced by ecological and evolutionary pro-

cesses, yet both are rarely studied together as models often focus on a single spatial, temporal

or taxonomic scale. The aim of this work is to predict the community assembly forces shaping

biodiversity, as well as other classical evolutionary and ecological parameters from empirical

data. To do this, I expanded an existing innovative mechanistic model of community as-

sembly (“massive eco-evolutionary synthesis simulations”, or MESS), which uses information

from three biodiversity axes – species richness and abundance; population genetic diversity;

and trait variation – to distinguish between competition, environmental filtering and neutral-

ity. Building on the foundations provided by MESS, I added essential components required

to properly detect and characterise elements of selection. This includes a new form of com-

petition, explicitly comparing each pair of individuals and distinguishing between inter- and

intraspecific competition. The results show that the new form of competition resembles

greatly the neutral model, blurring the frontier between selection and neutrality. It also

shows that the lack of ability to determine between discrete community assembly models

is in fact indicative of a mixed reality in which both filtering and competition act, but in

different amounts and sometimes weakly, highlighting the necessity of a more cohesive view

of community assembly forces rather than a discrete dichotomous one.



Glossary

- MESS : Massive Eco-Evolutionary Synthesis Simulations

- m : migration rate (at each “birth” event, the probability that the individual comes from

the meta community)

- s : speciation rate (at each “birth” event, the probability that it is followed by a speciation

event)

- J : number of individuals in the local community

- sE : ecological strength (represents the strength of selection for the environmental filtering

of the competition)

- z : trait value of an individual (no dimension, represents a generic trait)

- neutral model: community assembly model where all individuals have the same death

probability, regardless of their species identity or trait value.

- environmental filtering model: community assembly model where the death probab-

ility depends on the distance between the trait value of an individual and the filtering

optimum of the local community.

- mean competition model: community assembly model where the death probability

depends on the distance between the trait value of an individual and the mean trait value

of the local community.

- pairwise competition model: community assembly model where we compare all pair

of individuals. This does not take the species into account, just the trait value.

- interaction matrix model: community assembly model where we compare all pair of

individuals, their trait difference being weighted by a different factor if they are from the

same species or from different species

- continuous model: mixed community assembly model with an amount of neutrality,

environmental filtering and competition (following the interaction matrix model).
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1 Introduction
Unraveling the ecological and evolutionary mechanisms that shape biodiversity is a

major challenge in Biology. Many models have been developed attempting to reveal the

diverse biological processes behind the evolution of biodiversity (24; 33). However, most of

these attempts apply exclusively to ecology or evolution, because models focus on different

time scales and different levels of structure (e.g. species or populations). Indeed, ecological

models tend to be individual-based (11; 25) and focus on relatively short timescales, while

evolutionary frameworks tend to focus on longer timescales and study species dynamics

(1; 19). Nevertheless, models emerge attempting to connect both fields (30), since it is now

recognised that the ecological and evolutionary aspects of biodiversity are interlaced (29). A

classical approach is to model evolutionary dynamics in an individual-based manner (24), in

order to possibly integrate different species but also different sub-populations of these species.

Many ecological and evolutionary processes are thought to have an influence on struc-

turing the ecological communities, yet there is little agreement on which processes are most

important, and methods to infer processes from data are needed. Two particularly prominent

processes are environmental filtering and competition. Yet, a lot can also be done without

modeling explicit difference between individuals from different species. According to the en-

vironmental filtering paradigm, the environment selects against certain species by favoring

certain phenotypes over others (4; 15). Selection can also occurs through competition between

species and individuals that can lead to competitive exclusion (1; 17; 34). Yet, the diversity

and relative abundances of species in ecological communities could also be explained by a

random walk, with death probabilities independent of species identity (22; 11). This hypo-

thesis is called the neutral theory of biodiversity. All these processes affect various aspects of

empirical data: the species richness and abundances distribution (18), as well as population

genetic diversities (3), and trait variation of the species in a phylogenetic context (14). Each

of these data axes captures different pieces of information: changes in species abundance

take place on ecological timescales while the accumulation of genetic variation occurs over

thousands of generations (16) and phylogenetic diversity over millions of generations (32).

The MESS model (“Massive Eco-Evolutionary Synthesis Simulations”), developed by

Overcast et al. 2020 (21), is built upon classical biogeography and community ecology
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theory (11; 21), while also incorporating micro- and macro-evolutionary processes. MESS

proposes an inference method to determine which process among neutral, environmental fil-

tering and competition has predominated the community assembly in a local community. In

addition to that, MESS infers other underlying parameters of the community assembly, such

as the migration and speciation rates. Yet, MESS relies on a simplified view of competition,

where the distance between an individual’s trait value and the mean trait value of the pop-

ulation determines the individual’s survival in the face of competition (21; 28). MESS also

has other drawbacks, such as discriminating strictly among the community assembly models

at the beginning of the simulation without any possibility to have communities shaped by

several models in different proportions, which impedes its ability to diagnose competition

and filtering as we expect these processes to be mixed in nature. In the environmental fil-

tering case, individuals whose phenotype is closest to a target (the filtering optimum) are

favored. This means some individuals can have a huge advantage if they are close enough to

the optimum and so be virtually immortal as long as other species are present.

In this project, I built on the MESS simulation method to develop a more biologically

realistic competition model, which enables better understanding of the influence of competi-

tion and its various forms on the community assembly and more generally on the three axes

of biodiversity data. I also developed a continuous approach for the community assembly

model, enabling the different models to shape biodiversity in a single simulation. The lead-

ing idea is to approach a more realistic view of community assembly and to achieve better

predictions of the underlying parameters.

2 Material & Methods

2.1 The core MESS model

MESS (21) simulates a metacommunity and a local community being colonised. The

metacommunity is simulated first with a constant birth-death process, using fixed speciation

and extinction rates, until the specified number of species is reached. Traits are simulated on

the resulting phylogeny using a Brownian motion process, and abundances per species are

sampled from a log-normal distribution.

The metacommunity is large and static with respect to the timescale of processes in
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Figure 1: Functioning of the MESS model, adapted from Rosindell et al. 2011 (26). At each
time step, an individual dies and is replaced either by an immigrant or by a descendant from an
individual from the local community.

the local community evolution. At each time step for the local community, an individual

dies and is replaced either by a descendant from an individual of the local community, or

by a migrant from the mainland at rate m (Fig 1). Speciation events occur at rate s: the

new species inherits its trait value from its parent species, with some normally distributed

variation. The size of the local community (J) is fixed throughout the simulation. At the end

of a simulation, the genetic diversity is simulated for each species’ population based on the

histories of colonization and abundance changes though time. This enables the calculation

of the local genetic diversity and genetic divergence from the mainland (20).

Model Death probability of the individual i with trait value zi

Neutral P(zi) = 1
J (1)

Environmental filtering P(zi) = 1− exp
[
− 1

sE
(zi − zE)2

]
(2)

Mean competition P(zi) = exp
[
− 1

sE
(zi − z)2

]
(3)

Table 1: Death probabilities associated to the trait values. Values are afterwards normalized
to sum up to 1. zi is the trait value of individual i. J is the size of the local community. sE is the
ecological strength. zE is the filtering optimum. z is the mean trait value for the local community.

The death probabilities of the individuals vary depending on the chosen community

assembly model. In the neutral case, it is a uniform distribution. In the environmental

filtering paradigm, it is based on the distance between the individual’s trait value and the

filtering optimum. Finally, in a context of competition, it is based on the distance between

the individual’s trait value and the mean trait value for the local population (21; 28). The

ecological strength sE refines the effect of competition or environmental filtering by increasing
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or decreasing the impact of the distances over the death probabilities (Table 1). See Appendix

A.1 for a detailed table of all parameters.

To describe the results of any simulation, summary statistics are computed for each

of the three target data axes (species abundances, population genetic variation and trait

values). These statistics include generalized Hill numbers (6) – which capture magnitudes

and relative evenness of distribution of quantities within the local community for each axe

– and other classical data descriptors, such as mean, median, standard deviation, skewness

and kurtosis. For more details, see Overcast et al. 2020 (21).

2.2 Pairwise competition

Competition in MESS originally relies on a comparison between each individual’s trait

value and the mean trait value for the local population, following Ruffley et al. (28) (eq.

3). Because it is collapsing all trait differences into one value, this simplifying assumption

can generate counter-intuitive results: the density of species across the trait axis might be

bimodal, leading to an obvious gap around the mean which is wrongly penalised by the

algorithm while denser areas are favored (Fig. 2).

Figure 2: Schematic example of species distribution in the trait space. If the red points are
existing individuals, classical theory would predict E to outcompete F because he is in an available
ecological niche, while the competition model in MESS predicts the opposite.

In order to make the model more biologically realistic, I implemented a pairwise com-

petition model, which compares each individual to all the others. zi is the trait value for

individual i, zj for individual j and sE is the ecological strength (eq. 4). The obtained values

are normalized throughout the population to sum up to 1. This added complexity had a

huge cost on computation time because every pair needs to be checked instead of just each

individual against the mean. This issue was tackled by essential code optimisation carried

out as part of this project, and a careful test of the optimised code (Appendix A.3).

4



P (zi) =
∑
j 6=i

exp
−(zi − zj)2

sE

 (4)

2.3 Interaction matrix

The pairwise competition model does not allow the refinement of the strength of the

intraspecific competition: individuals of the same species have the exact same trait value and

thus the exponential is always equal to 1. In order to allow the strength of competition to

vary, and also to allow for mutualistic interactions to exist (reducing the death probability

instead of increasing it), a square matrix α of size J was introduced to specify the strength

and sign of interaction for each pair of individual ij, based on their respective species (eq.

5).

P (zi) =
∑
j 6=i

−αij exp
−(zi − zj)2

sE

 (5)

I explored different possibilities to parameterize this α interaction matrix, with the aim

to limit the number of additional parameters and to produce realistic results. The most

promising was to have separate but fixed for the simulation interspecific and intraspecific

terms. The intraspecific term was constrained to be in absolute value greater than or equal

to the interspecific term to prevent one species dominating the local community (Appendix

A.5). Positive interactions have not yet been investigated.

2.4 Testing convergence to apparent neutrality

To understand the apparent convergence of the pairwise competition to neutrality, I

studied the trait distribution, which gives a graphical representation of the population, for

several sets of parameters to compare our expectations with the outputs. The death mech-

anism being the only difference between the community assembly models, the distribution

of death probabilities was also plotted to understand whether the convergence in summary

statistics is due to a convergence in death probabilities. To study whether the death prob-

abilities distribution was significantly different from a uniform distribution, I conducted a

Pearson’s chi-squared test: 10 0000 individuals are drawn with replacement from the local

community, and the obtained distribution is compared to a uniform expectation. This binary
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descriptor of neutrality is averaged over several generations to give the proportion of nearly

neutral step in a simulation, the metric used the figures.

2.5 From discrete to continuous assembly model

To tackle the issue of the strict distinction between the different community assembly

models, I proposed a continuous approach of the model. In the continuous formulation,

the assembly model is a mosaic of filtering, competition, and neutral models, their respective

amount being represented by coordinate on a simplex. For each simulation, the death function

is drawn according to these proportions at each time step. Biologically, this means that

an individual can die from being poorly adapted to its environment (filtering), being out-

competed for resources (competition), or just having bad luck (neutral).

Figure 3: Graphical representation of the continuous community assembly model: 5%
Pairwise competition, 5% Neutral and 90% Filtering

Instead of predicting a single value, the inference will have to predict two values (amount

of competition, amount of filtering, the rest being neutral), which could have a negative

impact on the efficiency of the inference. Yet, this could also enable more accurate predictions,

a continuous approach of the community assembly processes being more biologically realistic.

Since all death probabilities are used in each simulation, the ecological strength para-

meter sE cannot remain unified between environmental filtering and competition throughout

the software. Considering that the interspecific and intraspecific competition terms are suf-

ficient to refine the strength of the competition in the pairwise competition steps, I removed

the ecological strength from these simulation when using the continuous model.

To approach the behavior of the new versions of MESS, I reproduced the figures 2 and

3 from Overcast et al. 2020 for the pairwise model, the pairwise model with varying inter-

and intraspecific competition (called interaction matrix) and the continuous model. For the

continuous model, simulations were sorted according to the community assembly model with
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the highest proportion of the three.

2.6 Code availability and architecture

The code used for the simulations is available on GitHub in its three versions (pairwise

competition, interaction matrix and continuous). I introduced the possibility to specify the

random seed for any simulations to make our tests repeatable, and all simulation results are

available online with the used parameters for reproducibility (Appendix A.2).

2.7 Inference methods

To perform the inference based on MESS simulations, I first ran several tens of thousands

simulations with parameters spanning over wide range of possible values (Appendix A.9),

and computed the summary statistics for all these runs and for the empirical data. The

MESS inference procedure relies on a classifier and a regressor, trained with Random Forest

strategies (5) and implemented with the scikit-learn module for python (v0.20.3, (23)). To

quantify the accuracy of both the classifier and the regressor, simulated data are split into

5 groups and each is used successively as test set and the others as training set. The real

parameters used for each simulation being known, the accuracy can be computed.

The prior value used for the inferences are based on Overcast et al. 2020 (21), in

order to enable a comparison of the results between both methods. The competition model

used here are both new models (pairwise competition and interaction matrix), and not the

mean competition model.

2.8 Empirical examples

I reanalyzed the data sets from Overcast et al. 2020 as a reference for comparing the

predicted results: 1) the spider community from Reunion island (8); 2) weevil communities

from two Mascarene islands (Reunion and Mauritius) (12); 3) three subtropical rain forest

tree communities (27); 4) Galapagos snail communities collected from Santa Cruz (13; 31).

To compare the precision of the different predictions obtained with our different infer-

ences (with and without the continuous model, and with interspecific competition lower or

equal to intraspecific competition in the discrete case), I qualitatively compared the predic-

tion errors of the different regressions, and the length of the 95% intervals prediction as well
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as the relative error for the prediction (Appendix A.11). To compare the predicted com-

munity assembly models, I plotted the confidence in each model in the discrete case, and the

estimation of proportions in the continuous case (Fig. 10).

3 Results

3.1 Different forms of competition show different behaviors

Figure 4: Effect of varying speciation rate and community assembly model on summary
statistics. Species richness, rank abundance, rank genetic diversity, and rank trait values for over
1000 simulations generated under neutral, mean competition, pairwise competition, interaction
matrix and environmental filtering scenarios with time fixed at 500 generations, with J=1000,
sE=0.1 and m=5e-3. Rows of panels correspond to simulations with high (s = 0.0001), low (s =
0.00005) and no (s = 0) speciation. In the left column of panels, plots indicate the distribution of
richness across simulations. In the rank plots, thick lines indicate average rank values and shaded
areas show plus and minus one standard deviation.

I first verified that the results of the pairwise competition significantly differed from the

mean competition model by inspection of figure 4 (reproduction of Fig 2 of Overcast et al.

2020 (21)). The pairwise competition model differs highly from the mean competition model.

The exploration of the behavior of the different community assembly models through time

also shows that for all the represented variables, the pairwise competition model is closer to

the neutral model than any other (see Fig 5, reproduction of Fig 3 from Overcast et al.
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2020 (21)). The behavior of this version of MESS shows intermediate results between the

pairwise model and the filtering model (Fig 4, 5) in most cases, and behaves quite differently

at the end of the simulations. Although Λ=1, the hill numbers have not reached a plateau.

Figure 5: Community summary statistics through time for neutral and non-neutral
models. This plot depicts the temporal change in selected summary statistics for the four focal
community assembly models at three different speciation rates: No, Low, and High corresponding
to s = 0, 0.0005, 0.005, respectively. Community assembly models depicted are neutral, mean
competition, pairwise competition, interaction matrix and environmental filtering. Each subpanel
shows the resultant summary statistic for over 1500 simulations equally spaced through time
for each model class, with J=1000, sE=0.1 and m=5e-3. Simulated values are depicted as points,
and a least squares polynomial is fit to better illustrate the trajectory. The far left column of panels
illustrate species richness on the y-axes (S). The y-axes of the remaining columns illustrate the Hill
number of order 1 for abundance, genetic diversity, and trait values, respectively.

3.2 Convergence of pairwise competition model to neutrality

For the 4 models the trait distribution corresponds to our expectations (Appendix A.8).

The even distribution across the trait axis in the pairwise competition model case could lead

to equal death probabilities for each individual. After 160 generations, all death probabilities

tend to resemble a uniform distribution (Appendix A.4), however this convergence happens

earlier in the simulation in the case of the pairwise competition model (Fig 7): at 64 gener-

ations the death probabilities distribution is already flat, while this is not the case for the

other 2 models. This could explain the apparent convergence of the pairwise competition
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simulations to neutrality.

Figure 6: Percentage of almost neutral time-steps with different ecological strength
parameters for 3612 simulations, over the 100 last generations (400 to 500).

Figure 7: Percentage of almost neutral time-steps for different migration and speciation
rates over the 100 last generations and representative death probabilities per species after 64
generations. See Appendix A.6 for the neutral simulations.
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For the pairwise competition model, the lower the ecological strength is, the more uni-

form the death probabilities distribution is (Fig. 6). The transition period is between 5.10−2

and 3, which is within the tested range for the inferences. This effect is also detectable in the

filtering model, even if it is less clear: natural selection acts differently in both models. How-

ever, no clear pattern emerge for the mean competition model. The dynamic through time

confirms that simulations become more neutral as time passes in the pairwise competition

case, but not for the other models (Appendix A.7).

The impact of speciation and migration rates over the proportion of nearly neutral

death steps is clear for the environmental filtering model and also distinguishable for the

mean competition model (Fig 7): the lower the rates, the more neutral the results are. There

was no discernible impact of migration or speciation on proportion of apparently neutral

steps in the pairwise competition model

3.3 Continuous model

Figure 8: Effect of varying speciation rate and community assembly model on summary
statistics. Species richness, rank abundance, rank genetic diversity, and rank trait values for 855
simulations generated with time fixed at 500 generations, with various proportions of the community
assembly models (more neutral, competition or environmental filtering). See Fig 4 for description.

The competition model used for the continuous implementation is the interaction matrix.
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The results shown in Fig 8 are quite different from those produced by the discrete community

assembly model. For example, the distributions of the number of species are highly variable

and no longer normal and the three curves are overlapping. When looking at the changes

across time however (Fig. 9), the distinction between the different predominating models is

clearer, especially at the later stages of the simulations.

Figure 9: Effect of varying speciation rate and community assembly model proportions
on summary statistics. Majority community assembly models depicted are neutral, competition
and environmental filtering. Each subpanel shows the resultant summary statistic for over 1200
simulations equally spaced through time for each model class. See Fig 5 for description.

3.4 Fitting to empirical data

The performance of the classifier in the discrete community assembly model has been

assessed with confusion matrices (Appendix A.10). These show that the community assembly

model used in the simulation is easily recovered by our inference method. This proves that

the community assembly model could be recovered, if what happens in nature is close to

what is modeled by MESS. The performance of the regressor was assessed through cross

validation plots (Appendix A.10). For both discrete community assembly inferences, the

regression provides encouraging results, with a high predictability reached for α, J and ν.

However, some parameters (such as m or sE) are harder to predict. In contrast our inference
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method does not perform well enough to enable to do predictions for empirical data with the

continuous community assembly model (Appendix A.10.4).

The predicted community assembly model is consistent throughout the different infer-

ence methods for the same data set, and differs from one empirical data set to the other

(Fig 10). However, results for the other parameters are harder to interpret because of high

variability in the predicted values and low confidence in those (Appendix A.11). The per-

formances of the different version has been compared quantitatively through the width of the

95% confidence intervals and the relative error (Appendix A.11), and qualitatively with the

posterior predictive check plots (Appendix A.12). The inference method performing best is

the interaction matrix.

Figure 10: Predicted model for each set of empirical data. Successively for each data set :
the original prediction from Overcast et al. 2020 (M), the prediction for the pairwise competition
model (P), for the interaction matrix (I)and the continuous model (C).

4 Discussion

4.1 Convergence of competition models to apparent neutrality

Strongly accurate descriptions of biodiversity are needed to discern competition from

neutrality in the context of more accurate models of competition than previously studied

in related work (21) producing results resembling neutral results. The theory of emergent

neutrality argues that the mechanisms behind niche theory and those behind the neutral

theory could lead to the same observable results in the community structure (10). One way
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to explain this apparent convergence is that mechanisms which appear to be neutral are

regulated by more complex underlying competition mechanisms (hidden niches (2)), often

not directly modeled but ruling the community assembly. Another explanation is that species

either end up very similar in traits (so they don’t compete strongly) or different (so they don’t

compete at all) but not intermediate, where the niches have a more obvious role in dynamics.

In this perspective, the neutral theory is a simplification of what is observed and a useful

tool to reduce the number of parameters, since it produces results similar to selection with

independent niches (7). Our results support this view, and contrast with the previous finding

that neutral and non-neutral processes (both environmental filtering and competition) were

easily distinguished (21).

The death probabilities distribution shows that the apparent convergence between the

neutral and pairwise models is linked to a convergence toward an equilibrium: individuals

that are less fit than the others are quickly counter-selected, until all remaining individuals

are almost equivalent and thus have almost equal probabilities of dying (Fig. 7). Two factors

are essential in this convergence: its speed and its degree. In this perspective, a stronger

selection – induced by higher migration and speciation rates, making new individuals available

– accelerates the reach of the equilibrium, and so the convergence toward neutrality. However,

lower rates are associated to a higher “neutrality” in Fig 7 for the mean and filtering models,

which could be explained by the fact that less new individuals arriving through migration or

speciation implies that the selection is less efficient and so less detectable. So convergence is

faster with higher rates, but also less accurate. The convergence toward an equilibrium in the

pairwise competition case is both quicker and more accurate than for the other models. Yet,

even if the resulting mechanisms after some generations appear to be the same, communities

are structured in a different way, and the trait distribution (Appendix A.8) clearly shows

some differences: traits are spread out evenly across trait space in the pairwise competition

case and randomly distributed in the neutral case. This proves that all models can be

distinguished when considering enough variables or data axes. Here, the species abundance

distribution does not enable to distinguish between neutral and non-neutral, but summary

statistics associated with trait values could, proving the necessity of mechanistic models

spanning over multiple data axes such as MESS.

Our simulations for Fig. 4 and 5 all start with the similar initial conditions (for J , m,

14



s, etc.), so it takes time for the process and its effect on the community to be noticeable

in summary statistics. Therefore, if processes are variable across time in the wild they will

be harder to detect and we must assume that processes remain similar for a long period of

time. The comparison with the interaction matrix model must be cautious since the number

of varying parameters is not the same (varying inter- and intraspecific competition strengths

instead of all parameters being fixed).

Knowing that the inferences from the original publication (21) stated that the com-

munities were mostly neutral, the convergence observed could have a great impact over the

community assembly model predicted and could shift the prediction toward competition.

Nevertheless, the fine resolution of data produced with the MESS model could enable to dis-

criminate between neutral and non-neutral community assembly processes in empirical data.

The neutral model requires less parameters and should therefore be favoured by default,

but MESS analyses different data axes and that could enable the detection of an underlying

competition.

4.2 Empirical results

The processes we want to detect are assumed to be relatively constant through time.

This is not the case for the continuous model, which is consistent with the high prediction

errors (Appendix A.10.4). This could be inherent to the data generated by the continuous

model: since everything is highly random at each time step, no pattern can be distinguished.

This is demonstrated in Fig 8: all curves overlap, which is the expected outcome since all

simulations are a mix of all models. The necessary consistence of processes across time

is also probably contradicted in the filtering case. It might be that after the filtering has

happened, it is no longer the dominant force as all present species are already suitable – if

the environment remains constant, and our inference method does not account for varying

forces across time.

The confusion matrices shows that the prediction of the community assembly model is

quite accurate when done for simulated data (Appendix A.10.1). These these data being

designed by these models, empirical data may however be less easy to sort, especially if the

forces vary across time. Other untested forms of community assembly could be closer to the

empirical data than what we have in our simulated benchmark.
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The predicted confidence intervals for fitted model parameters were sometimes very

broad for the other variables (up to 95% of the prior, Appendix A.11). Future works could

improve the resolution by running more simulations within these intervals (a posteriori dis-

tribution of the parameters). Nevertheless, our results show that the new and biologically

more realistic form of competition developed here is now detected, presumably because of

trait data, despite the birth death process of individuals mimicking neutrality. The fact that

the species abundance distribution does not allow to distinguish competition from neutrality

had already been stated in literature (9), but taking into account other data axis such as

trait values by MESS enables this distinction.

A two dimensional trait space could also stabilize the continuous model by allowing

more complex trade-offs in trait selection between competition and environmental filtering.

Another hypothesis to explain the high regression error is that it is due to an insufficient

number of simulated data sets with respect to the number of parameters to infer: we added

a new parameter for the community assembly model and the number of needed simulations

grows exponentially with the number of parameters to infer. Increasing the number of sum-

mary statistics, if they provide new information, could be another lead. Nevertheless, the

continuous model predicts proportions close to the confidences for the choice of the discrete

model. This potentially validates our continuous approach, and proportions of the different

community assembly models have more ecological meaning than the confidence in an ex-

treme model dominated by only a single force. These encouraging results should therefore

be further studied.

5 Perspectives and future developments
MESS is constrained by numerous simplifications that are essential to develop any model

and to hold to reasonable computation times. However, our developments on the original

MESS model suggest possible enhancements and also make the technical improvements ne-

cessary to tractably use these enhancements.

The initiation in MESS relies on the simplifying assumption that the local community

is totally invaded by a single species at time 0. MESS includes a feature allowing to begin the

simulations with a single individual (not explored in this report), but even in this perspective
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the maximal size of the populations is fixed and once reached the number of individuals does

not vary. A sense of density-dependence, with explicit indirect competition for resources and

possibly a varying amount of available resources instead of the explicit direct competition

between individuals, could be introduced to counter this simplification. However, these

mechanisms are very complex and would affect tractability.

The model could be further developed to incorporate other features. For instance,

the phenotypic representation of each individual - its trait value - is only one dimensional

in the current version of the model, however interesting dynamics of trade-off (especially

with the continuous community assembly model and the eventual antagonistic influences of

competition and environmental filtering) could be explored in two dimensions. Expanding

the possible phenotypes could also lead to make the corresponding fitness landscape more

complex, it could comprise several peaks of fitness, as with a sum of Gaussian functions

for instance. The possibility of including other types of interactions (Table 2) has already

been discussed here and included in the model, but not thoroughly tested nor used for the

inferences yet and could be further explored.

- 0 +
- competition amensalism predation/parasitism
0 amensalism neutralism commensalism
+ predation/parasitism commensalism mutualism

Table 2: The different types of interactions between individuals

Evolution is depicted in MESS through the possibility of point-wise speciation in the

local community, which includes a variation in the trait value for the species. However, many

evolutionary models includes more complex dynamics, including non-homogeneous species

(each individual has a unique trait value) and a protracted speciation model (24). Having

this possibility of character displacement would probably greatly change the dynamic of the

simulation and interesting patterns could emerge. However, this would question the notion

of species in itself, and increase the computation costs in time and space.

6 Conclusion
The MESS model is an individual-based mechanistic model of community assembly tak-

ing into account evolutionary and ecological processes such as dispersal, drift, competition

17



and speciation. It generates data over three axes used to describe the biodiversity: the ge-

netic diversity, the species abundances and its distribution and the trait diversity. Using a

high number of simulations and machine learning tools, MESS provides a framework to test

our model against real world data, and to predict the strength of the different community

assembly processes – competition, environmental filtering and neutrality – from empirical

data. In this project, I changed the form of competition used in MESS to make it more

biologically realistic with pairwise comparison, which resulted in simulations resembling sub-

stantially the neutral simulations. Competition can still be detected in empirical biodiversity

data and distinguished from neutrality thanks to the wide range of data used by MESS, espe-

cially the traits data which are very different in both cases. The introduction of a continuous

community assembly model showed encouraging results since it reproduced the confidence

in each model given by the discrete models, and gives a better interpretation of a mix of

factors. This tends to prove that empirical data are indeed produced by a mix of the studied

processes, and this mix is increasingly easy to diagnose with more data and more advanced

inferences with mechanistic models as we do here.
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Appendix
A.1 Model’s parameters

Categorical parameters
Parameter Options

Community assembly model Neutral / Competition / Environ-
mental filtering / Pairwise com-
petition

In situ speciation model None/Point mutation/Random
fission

Local community initial conditions Metacommunity
sample/Monodominance

Metacommunity component parameters
Symbol Meaning of parameter Type and range
JM Total number of individuals Integer � 1
SM Total number of species Integer > 1
λ Per lineage birth rate (speciation) Real ∈ [0,∞]
ε Per lineage death rate (extinction) as propor-

tion of λ
Real ∈ [0, 1]

σ2
M Trait evolution rate variance (Brownian mo-

tion)
Real > 0

Local community component parameters
Symbol Meaning of parameter Type and range
J Total number of individuals Integer > 1
S Local species richness* Integer > 1
ν Per capita per birth speciation rate Real ∈ [0, 1]
m Immigration rate from metacommunity (per

step)
Real ∈ [0, 1]

σ2 Trait evolution rate variance (per speciation
event)*

Real > 0

zE Optimal trait value in environment* Real
sE Strength of ecological filtering Real > 0
Λ Fraction of turnover equilibrium* Real ∈ [0, 1]
αintra Strength of intraspecific competition Real > 0
αinter Strength of interspecific competition Real > 0

Population genetics coalescence component parameters
Symbol Meaning of parameter Type and range
L Sequence length of simulated genomic region Integer > 0
µ Mutation rate Real ∈ [0, 1]
α Abundance/Ne scaling factor Integer > 0

Table 3: MESS model parameters

All MESS model parameters, their interpretations and range of possible values. Para-
meters indicated with an asterisk (*) are pseudo-parameters which are either emergent, com-
pound, or randomly sampled from a distribution with parameters determined by other ele-
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ments of the model.

A.2 Code availability and simulation results
The code is public and available on GitHub.

Model Branch name GitHub link
Pairwise competition pairwise_competition https://github.com/messDiv/MESS/tree/pairwise_competition
Interaction matrix interaction_matrix https://github.com/messDiv/MESS/tree/interaction_matrix
Continuous model continuous_model https://github.com/messDiv/MESS/tree/continuous_model

Table 4: Link to the different branches of the project in the GitHub repository

For a better repeatability of the produced results, all simulations results are also avail-
able online. They can also be reproduced locally by using the provided random seeds, or
replicated by using the same input parameters. All of theses are summarised in the simula-
tions files.

Reference in the report
(by order of appearance) Type Link

Figures 4, 5, 8 and 9 Simulation results
with seed https://cloud.biologie.ens.fr/index.php/s/ciaTMDFZss70oix

Figures 6, 7
Appendix A.6 and A.7

Simulation results
with neutrality test
no seed

https://cloud.biologie.ens.fr/index.php/s/38mqsVBWOGWPTIL

Inference simulations
Appendix A.10

Simulations results
with seed https://cloud.biologie.ens.fr/index.php/s/FjtxEfA7Vv6nnj0

Inference results
Appendix A.11

Predicted values
for all empirical data sets https://cloud.biologie.ens.fr/index.php/s/8Xw9lypmuQCOjo3

Speed assessment
Appendix A.3 Brut speed measures https://cloud.biologie.ens.fr/index.php/s/GhbjtijNI1kl0kT

Implentation validity
Appendix A.3

Simulation results
no seed https://cloud.biologie.ens.fr/index.php/s/A2eerLKbC0kzUlY

Number of species
Test of gamma law
Appendix A.5.1

Simulation results
no seed https://cloud.biologie.ens.fr/index.php/s/wp5ojYydax0AXAm

Number of species
Test of matrix
Appendix A.5.2

Simulation results
with seed https://cloud.biologie.ens.fr/index.php/s/eBRGHRO0voGNpyv

Table 5: Links to the presented results. Seeds to reproduce the results are available when
possible

A.3 Speed improvement of the model
A pairwise comparison of trait values costs more computation time than a single com-

parison to the mean, and the simulations were around 4 times slower than with the mean
competition model. And yet, the computation time is a critical issue in a context of large
simulation experiments. This necessitated code optimization (around 6 times faster after
optimisation for the pairwise competition model).

A.3.1 Speed assessment

To compare all the models, 50 simulations were run for 200 generations for each model
with all parameters being otherwise equal and chosen to be close to the values inferred from
empirical data by the MESS model (21). To increase the speed of the simulations, I changed
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the way the Local Community was managed (from lists to arrays), obtaining the following
results : (values are the mean of 50 simulations, +/- standard deviation, in seconds)

Model Without arrays With arrays Ratio Continuous model
Neutral 9± 2 24± 3 0.375 177± 68
Mean competition 456± 114 89± 11 5.14 no runs
Pairwise competition 1944± 258 323± 40 6.02 no runs
Environmental filtering 80± 18 70± 10 1.14 141± 49
Interaction matrix no runs 419± 54 no runs 440± 93

Table 6: Comparison of the speed to the code for different version (mean value per run,
in seconds)

Noticeably, this greatly increased the speed of both competition model thus making
further modelling and testing of MESS possible, even if the speed of the neutral mode was
on contrary increased (due to the management of arrays not useful in this case). The value
for the interaction matrix is here to give a point of comparison. This method was also used
to test the continuous community assembly model, as to see whether it was usable.

A.3.2 Validity of the new implementation

To prove that the change of the code structure does not affect the behavior of the pro-
gram, experiments were made for both version of the software, for a wide range of parameters
(for a total of 160 simulations per model per version). The resulting summary statistics were
compared using t-test (with Bonferroni correction for multiple testing). The results are un-
equivocal (Fig. 11).

Figure 11: T-test to compare MESS implementations (with and without arrays)
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This method was also used to compare the interaction matrix with the pairwise com-
petition without the matrix: if it is filled with -1, the results are supposed to be identical to
the pairwise competition model without the interaction matrix (Fig. 12)

Figure 12: T-test to compare MESS implementations (with and without interaction matrix)

Finally, this method also enabled to compared the continuous model selection with
previous implementations : giving 100% in one category is expected to produce the same
results as the discrete community assembly model (Fig. 13).

Figure 13: T-test to compare MESS implementations (with and without continuous com-
munity assembly model selection)

In order to later enable better housekeeping of the code and to provide not only replicable
but also repeatable results, I added the possibility to specify a seed at the beginning of the
simulation, and to record this seed.
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A.4 Death probabilities per species in later stages of the simula-
tions

Figure 14: Death probabilities per species for the 3 non-neutral community assembly
models, after 160 generations.

A.5 Constraining the interaction matrix as to avoid pathological
behaviors

A.5.1 Exploration of the gamma law distribution for the terms of the interaction
matrix

Figure 15: Number of species after over 400 generation, with the terms of the interaction
matrix being drawn following a broad range of possible gamma laws (variance and mean between
0.01 and 1), for around 360 simulations.

The distribution of the number of species does not correspond to what we expect to
observe in nature: in most cases, a single species invades the local community, and the
distribution does not look normal as in the other community assembly models.
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A.5.2 Density dependence and relative strength of intra- and interspecific com-
petition

Figure 16: Number of species after 500 generations for various ranges of inter and intraspecific
competition terms, in the pairwise competition case, for 892 simulations. The comparison for the
strength of competition are done in absolute values.

Many combination resulted in pathological behaviors, the local community being totally
saturated with a single species. This shows the importance of density dependency in the
ecological communities: there is usually an important cost at being a common species.

A.6 Neutrality tests for the neutral simulations

Figure 17: Assessment of the neutral death step test (Pearson’s Chi squared test) for
the neutral simulations, for various migration and speciation rates.

The analyzed steps are predicted neutral, which corresponds to what is expected and
validate our test.
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A.7 Neutrality tests through time

Figure 18: Evolution of the nearly neutral status across time for the mean competition
model (same simulation set as in Fig 6)
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Figure 19: Evolution of the nearly neutral status across time for the pairwise competition
model (same simulation set as in Fig 6)

Figure 20: Evolution of the nearly neutral status across time for the environmental
filtering model (same simulation set as in Fig 6)
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A.8 Trait distribution exploration

Figure 21: Typical trait values distribution for the 4 community assembly models studied. Two
examples (red and blue) are given for each model.

This corresponds to our hypothesis on the functioning of the different models of sec-
tion 2.4. As a matter of fact, two groups of species are distancing themselves in the mean
competition model (C), while the species are much more grouped together in the environ-
mental filtering case (D) and evenly distributed in the pairwise competition model (A). In the
neutral case, they are random and their abundances follow a typical log-normal distribution.
This also shows that we can expect significantly different results in the summary statistics
resulting from trait data, but also in the species abundances and their variation and thus in
the phylogeny.

A.9 Parameters range for the inference method

Parameter Range Type of sampling
Λ 0 – 1 uniform
Community assembly model
(discrete) [“neutral”,“filtering”,“pairwise_competition”] uniform

Community assembly model
(continuous) (0 – 1; 0 – 1) coordinates on a simplex uniform

α 1000 – 10000 uniform
sE 0.01 – 10 loguniform
intraspecific competition 0.01 – 1 loguniform
interspecific competition 0.01 – 1 loguniform
J 1000 – 5000 uniform
m 0.001 – 0.01 loguniform
ν 0.0005 – 0.005 loguniform

Table 7: Parameter ranges used for the inferences (based on Overcast et al. 2020 (21)
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A.10 Test of the inference method
A.10.1 Classification

Figure 22: Confusion matrix, in the case of
the pairwise competition (intraspecific com-
petition = interspecific competition), for a
train set of 25 000 simulations (5 -fold
cross-validation). Simulations available here:
https://tiny.tobast.fr/sUs5h-Gu

Figure 23: Confusion matrix, in the
case of the pairwise competition (intraspe-
cific competition > interspecific competi-
tion), for a train set of 25 000 simulations (5
-fold cross-validation). Simulations available
here:https://tiny.tobast.fr/kAfAMtg2

On average, the second (right) model performs slightly better.

mean good classification rate median good classification rate
pairwise competition 61.2 % 60.55 %
interaction matrix 62.6 % 62.15 %

Table 8: Performance comparison for the pairwise competition and interaction matrix inferences.
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A.10.2 Regression

Figure 24: Predicted against true value for the regressor, in the case of the pairwise compet-
ition (intraspecific competition = interspecific competition), for the neutral community assembly.
Same dataset as the confusion matrix.

A.10.3 Test in the interaction matrix case

Figure 25: Predicted against true value for the regressor, in the case of the interaction matrix
(intraspecific competition > interspecific competition), for the filtering community assembly. Same
dataset as the confusion matrix.

11



Figure 26: Predicted against true value for the regressor, in the case of the interaction matrix
(intraspecific competition > interspecific competition), for the neutral community assembly. Same
dataset as the confusion matrix.

A.10.4 Test in the continuous case

Figure 27: Predicted VS. true value for the continuous model regressor,
trained on a set of 50607 simulations. Simulation results available here : ht-
tps://cloud.biologie.ens.fr/index.php/s/vQQ26TlPKJtGuYM

A.11 Full results of the inferences
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A.12 Posterior predictive checks

In order to assess the quality of the predicted value, we run 50 simulations using the

estimated parameters and plot the results in the space of the 2 first principal components.

The empirical data are in red and the simulations in blue.

Figure 28: Posterior predictive check
in the pairwise competition case. The
data sets are A: Reunion spiders, B: Galapa-
gos snails, C: Mauritius weevils, D: Reunion
weevils, E: Dorrigo trees, F: Nightcap trees,
G: Washpool trees

Figure 29: Posterior predictive check in
the interaction matrix case. The data sets
are A: Reunion spiders, B: Galapagos snails,
C: Mauritius weevils, D: Reunion weevils, E:
Dorrigo trees, F: Nightcap trees, G: Washpool
trees
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Figure 30: Posterior predictive check in the continuous model case. The data sets are A:
Reunion spiders, B: Galapagos snails, C: Mauritius weevils, D: Reunion weevils, E: Dorrigo trees,
F: Nightcap trees, G: Washpool trees
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